B6 – LU institūti un aģentūras / Institutes and agencies of the UL
Permanent URI for this community
Browse
Browsing B6 – LU institūti un aģentūras / Institutes and agencies of the UL by Subject "(001)interfaces"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemSystematic Trends in Hybrid-DFT Computations of BaTiO3/SrTiO3, PbTiO3/SrTiO3 and PbZrO3/SrZrO3 (001) Hetero Structures(MDPI, 2022) Eglitis, Roberts I.; Piskunov, Sergei; Popov, Andrei I.; Purans, Juris; Bocharov, Dmitry; Jia, RanWe performed predictive hybrid-DFT computations for PbTiO3, BaTiO3, SrTiO3, PbZrO3 and SrZrO3 (001) surfaces, as well as their BaTiO3/SrTiO3, PbTiO3/SrTiO3 and PbZrO3/SrZrO3 (001) heterostructures. According to our hybrid-DFT computations for BO2 and AO-terminated ABO3 solid (001) surfaces, in most cases, the upper layer ions relax inwards, whereas the second layer ions shift upwards. Our hybrid-DFT computed surface rumpling s for the BO2-terminated ABO3 perovskite (001) surfaces almost always is positive and is in a fair agreement with the available LEED and RHEED experiments. Computed B-O atom chemical bond population values in the ABO3 perovskite bulk are enhanced on its BO2-terminated (001) surfaces. Computed surface energies for BO2 and AO-terminated ABO3 perovskite (001) surfaces are comparable; thus, both (001) surface terminations may co-exist. Our computed ABO3 perovskite bulk Γ-Γ band gaps are in fair agreement with available experimental data. BO2 and AO-terminated (001) surface Γ-Γ band gaps are always reduced with regard to the respective bulk band gaps. For our computed BTO/STO and PTO/STO (001) interfaces, the average augmented upper-layer atom relaxation magnitudes increased by the number of augmented BTO or PTO (001) layers and always were stronger for TiO2-terminated than for BaO or PbO-terminated upper layers. Our B3PW concluded that BTO/STO, as well as SZO/PZO (001) interface Γ-Γ band gaps, very strongly depends on the upper augmented layer BO2 or AO-termination but considerably less so on the number of augmented (001) layers. © 2022 by the authors. --//-- This is an open access article Eglitis R.I., Piskunov S., Popov A.I., Purans J., Bocharov D., Jia R., "Systematic Trends in Hybrid-DFT Computations of BaTiO3/SrTiO3, PbTiO3/SrTiO3 and PbZrO3/SrZrO3 (001) Hetero Structures", (2022) Condensed Matter, 7 (4), art. no. 70, DOI: 10.3390/condmat7040070 published under the CC BY 4.0 licence.