Introduction to Mathematical Logic, Edition 2021
dc.contributor.advisor | ||
dc.contributor.author | Detlovs, Vilnis | |
dc.contributor.author | Podnieks, Karlis | |
dc.date.accessioned | 2021-02-08T06:44:33Z | |
dc.date.available | 2021-02-08T06:44:33Z | |
dc.date.issued | 2021-02-07 | |
dc.description.abstract | Textbook for students in mathematical logic. First order languages. Axioms of constructive and classical logic. Proving formulas in propositional and predicate logic. Glivenko's theorem and constructive embedding. Axiom independence. Interpretations, models and completeness theorems. Normal forms. Tableaux and resolution methods. Herbrand's theorem. Sections 1, 2, 3 represent an extended translation of the corresponding chapters of the book: V. Detlovs, Elements of Mathematical Logic, Riga, University of Latvia, 1964, 252 pp. (in Latvian). | en_US |
dc.identifier.citation | V. Detlovs, K. Podnieks. Introduction to Mathematical Logic, Textbook for students, Edition 2021. | en_US |
dc.identifier.uri | https://dspace.lu.lv/dspace/handle/7/53914 | |
dc.language.iso | eng | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | mathematical logic | en_US |
dc.subject | propositional logic | en_US |
dc.subject | predicate logic | en_US |
dc.subject | model theory | en_US |
dc.subject | completeness theorems | en_US |
dc.subject | tableaux method | en_US |
dc.subject | resolution method | en_US |
dc.subject | Herbrand's theorem | en_US |
dc.subject | Research Subject Categories::MATHEMATICS::Algebra, geometry and mathematical analysis::Mathematical logic | en_US |
dc.title | Introduction to Mathematical Logic, Edition 2021 | en_US |
dc.type | info:eu-repo/semantics/book | en_US |