Core–Shell Engineering to Enhance the Spectral Stability of Heterogeneous Luminescent Nanofluids
Date
2017
Authors
Labrador-Páez, Lucía
Pedroni, Marco
Šmits, Krišjānis
Speghini, Adolfo
Jaqué, Francisco H.
García-Solé, José Antonio
Jaque, Daniel
Haro-González, Patricia
Journal Title
Journal ISSN
Volume Title
Publisher
Wiley-VCH Verlag
Abstract
The tendency to the miniaturization of devices and the peculiar properties of the nanoparticles have raised the interest of the scientific community in nanoscience. In particular, those systems consisting of nanoparticles dispersed in fluids, known as nanofluids, have made it possible to overcome many technological and scientific challenges, as they show extraordinary properties. In this work, the loss of the spectral stability in heterogeneous luminescent nanofluids is studied revealing the critical role played by the exchange of ions between different nanoparticles. Such ion exchange is favored by changes in the molecular properties of the solvent, making heterogeneous luminescent nanofluids highly unstable against temperature changes. This work demonstrates how both temporal and thermal stabilities of heterogeneous luminescent nanofluids can be substantially improved by core–shell engineering. This simultaneously avoids the leakage of luminescent ions and the effects of the solvent molecular changes.
Description
This work was supported by the Spanish Ministerio de Educación y Ciencia (MAT2016-75362-C3-1-R) and by COST Action CM1403. L.L.-P. thanks the Universidad Autónoma de Madrid for the ‘‘Formación de Personal Investigador (FPI-UAM)’’program. P.H.-G. thanks the Spanish Ministerio de Economia y Competitividad for the Juan de la Cierva program (IJCI-2015-24551). M.P. and A.S. thank University of Verona (Italy) for financial support in the framework of the ‘‘Cooperint 2016’’ and “Ricerca di Base 2015” projects. The work of K.S. was supported by Latvian National Research Program IMIS2 (Grant No. 302/2012).
Keywords
Research Subject Categories::NATURAL SCIENCES:Physics , core–shell nanoparticles , lanthanide , nanofluids , water