Emanuela Grinberga arhīva manuskripti / Manuscripts from the archive of Emanuels Grinbergs
Permanent URI for this collection
Browse
Browsing Emanuela Grinberga arhīva manuskripti / Manuscripts from the archive of Emanuels Grinbergs by Issue Date
Now showing 1 - 20 of 24
Results Per Page
Sort Options
- ItemDaži pētījumi par telpas ruletēm(1933-08-14) Grinbergs, EmanuelsDarbs kvalificēts kā Kandidāta darbs, Konkursa darbs, iesniegts LŪ, Matēmatikas nodaļai 1933. g. 14. augustā. Stud. math. Emanuels Grünbergs, Matr. 14875. Motto "Patientia vincet." Disertācijā 143 lpp. Publicējam bez pilnā teksta arī disertācijas ievadu.
- ItemDažas transformācijas elementārā ģeometrijā(1935-04-25) Grinbergs, EmanuelsReferāts nolasīts matēmatisko zinātņu darbinieku kongresā, 25. aprīlī 1935. gadā. Izdots Rīgā, 1936. Izdevusi Matēmatisko zinātņu darbinieku biedrība. Autors Cand. math. E. Grünbergs
- ItemPar n dimensiju Eiklīda telpas līknēm(1936-10) Grinbergs, Emanuels
- ItemÜber die Bestimmung von zwei speziellen Klassen von Eilinien(Mathematische Zeitschrift, 1937) Grinbergs, Emanuels
- ItemAnalītiskā ģeometrija(Latvijas Valsts Universitāte, 1941) Grinbergs, EmanuelsAnalītiskā ģeometrija. Lekciju konspekts, Lasīts fizikas un matemātikas fakultātes studentiem 1940./41. g.
- ItemPar oskulāciju, superoskulāciju un charakteristiskiem punktiem(1943-04) Grinbergs, EmanuelsNo Dr. A.Lūša raksturojuma E.Grinberga zinātniskajam darbam: Doktora disertacija, ko E.Grīnbergs sācis strādāt 1940/41 m.g. Latvija Valsts Universitātē un aizstāvējis Rīgas Universitātē 1944.g. /oponenti prof.Dr.A.Lūsis, doc.E.Fogels un doc.E.Leimanis/, uzrāda patstāvīgu pētījumu raksturu un ievērojamus papildinājumus divu ģeometrisko figuru pieskāršanās un oskulaciju teorijai. Superoskulacijas problemai ir aizrādīts ciešs sakars ar noteikta tipa diferencialvienādojumu singulariem atrisinājumiem. Doktora parbaudījumus specialos priekšmetos viņš izturēiis diferencalvienādojumu ģeometriskās teorijas un algebrisko ivariantu teorijas jautājumos.
- ItemPar oskulāciju, superoskulāciju un charakteristiskiem punktiem. Disertācijas manuskripta faksimils(1943-04) Grinbergs, Emanuels
- ItemOn osculation, superosculation and characteristic points. Addenda: Computations(1943-04) Grinbergs, Emanuels
- ItemOn osculation, superosculation and characteristic points(1943-04) Grinbergs, EmanuelsTranslated into English by D. Zeps Original text: Par oskulāciju, superoskulāciju un charakteristiskiem punktiem, https://dspace.lu.lv/dspace/handle/7/46435 Facsimile of the manuscript of dissertation: https://dspace.lu.lv/dspace/handle/7/46446 Facsimile of the manuscript of computations: https://dspace.lu.lv/dspace/handle/7/46433 Page numbers in translation are from original in Latvian
- ItemОБ ОДНОЙ ГЕОМЕТРИЧЕСКОЙ ВАРИАЦИОННОЙ ЗАДАЧЕ(ЛАТВИЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ, УЧЕНЫЕ ЗАПИСКИ, ТОМ XX, ВЫПУСК 3. 1958 ГОДА, 1958) Grinbergs, EmanuelsThis is the first article of Emanuels Grinbergs devoted to subjects in differential geometry and algebraic curves that he was dealing with before WW2, e.g., in his doctoral thesis "Osculation, superosculation and characteristic points" (1943).
- ItemMatemātiķim Emanuelam Grinbergam - 80(Zvaigžņotā Debess, 1990-01) Riekstiņš, E.īss izcilā latviešu matemātiķa Emanuela Grinberga dzīves un darbības apraksts
- ItemMotives for reflections. Part one(2013-12-12) Grinbergs, EmanuelsFacsimile of manuscript from the archive of Emanuels Grinbergs, University of Latvia. The article (in three pieces of manuscripts), written in Russian, contains some reflections on graph theory. It may be written in 1973.
- ItemNotes in the graph theory. A manuscript (with flower snark J5)(2013-12-13) Grinbergs, EmanuelsThis fragment of manuscripts, written in Latvian, is taken from a hardcover notebook of E.Grinbergs. The date when these notes started 29.7.72 is clearly seen on the first page, on the page 7 the date is 31.8.72, on 10th - 28.8.73. On page 6, rights, a graph corresponding to flower snark J5 can be clearly seen, see http://en.wikipedia.org/wiki/Flower_snark. This sample of manuscript shows that E. Grinbergs was building these graphs before 1975, when graphs named flower snarks were introduced by Rufus Isaacs.
- ItemMotives for reflections. Part two(2013-12-13) Grinbergs, EmanuelsFacsimile of a manuscript from the archive of Emanuels Grinbergs, University of Latvia. The article (in three pieces of manuscripts), written in Russian, contains some reflections on graph theory. It may be written in 1973. The graph on page 30 built from Petersen's graph is the flower snark J5, see http://en.wikipedia.org/wiki/Flower_snark. E. Grinbergs was building these graphs before 1975, when graphs named flower snarks were introduced by Rufus Isaacs.
- ItemOn threeconnected graphs with unique Hamiltonian cycle = О трехсвязный графах ...(2013-12-17) Grinbergs, Emanuels
- ItemMotives for reflections Addendum to part one(2013-12-17) Grinbergs, EmanuelsThe article (in three pieces of manuscripts), written in Russian, contains some reflections on graph theory. It may be written in 1973.
- ItemGeodesic graphs(2013-12-17) Grinbergs, EmanuelsIn the article, written in Russian, geodesic graphs, graphs with unique shortest path between every two vertices, are considered. Geodesic graphs are trees, odd cycles, and nontrivial example, the graph of Petersen. The article is dated 21.11.74.
- ItemSome reflections on the education of computer scientists(2013-12-17) Grinbergs, EmanuelsThis article in Latvian contains some reflections on educational problems what concerns computer science.
- ItemOne more geodesic graph(2013-12-17) Grinbergs, EmanuelsIn this note, written in Latvian, a way to build geodesic graphs, graphs with unique shortest path between every two vertices, is considered. Geodesic graphs are trees, odd cycles, and nontrivial example, the graph of Petersen. The article is dated 17.4.74.
- ItemDaži trīssakarīgi grafi un to saimes bez Hamiltona cikliem(2013-12-17) Grinbergs, EmanuelsThese manuscripts (in Latvian) contain examples of graphs without Hamiltonian cycles. See the flower snark J5 on the page 13. The date here 1.6.78.